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1.
An = AAA · · ·A︸ ︷︷ ︸

n times

=
(
PDP−1

) (
PDP−1

) (
PDP−1

)
· · ·
(
PDP−1

)︸ ︷︷ ︸
n times

= PD
(
P−1P

)
D
(
P−1P

)
· · ·D

(
P−1P

)
DP−1

= PDIDI · · ·DIDP−1

= PDDDD︸ ︷︷ ︸
n times

P−1

= PDnP−1

2. First off we have the identity 1− tanh2 x ≡ sech2 x so

sech2(2x) = 1− tanh2(2x)

By Osborn’s rule we can find the identity

tanh(A+B) =
tanhA+ tanhB

1 + tanhA tanhB

Therefore

tanh(2x) = tanh(x+ x) =
tanhx+ tanhx

1 + tanhx tanhx
=

2 tanhx

1 + tanh2 x

Going back to the sech identity

sech2(2x) = 1− tanh2(2x) = 1−
(

2 tanhx

1 + tanh2 x

)2

Making a common denominator

1− 4 tanh2 x(
1 + tanh2 x

)2 =

(
1 + tanh2 x

)2 − 4 tanh2 x(
1 + tanh2 x

)2
Expanding the square term in the numerator(

1 + tanh2 x
)2 − 4 tanh2 x(

1 + tanh2 x
)2 =

1 + 2 tanh2 x+ tanh4 x− 4 tanh2 x(
1 + tanh2 x

)2
Then finally simplifying the numerator and factorising the numerator

tanh4 x− 2 tanh2 x+ 1(
1 + tanh2 x

)2 =

(
tanh2 x− 1

)2(
tanh2 x+ 1

)2 =

(
tanh2 x− 1

tanh2 x+ 1

)2

2



3. Complete the square in the denominator

8− 2x− x2 = 8−
(
2x+ x2

)
= 8−

(
(x+ 1)2 − 1

)
= 9− (x+ 1)2

Then the integral is in the standard form. Let u = x+ 1 so that du
dx = 1∫

1√
9− (x+ 1)2

dx =

∫
1√

9− u2
du = arcsin

(u
3

)
+c = arcsin

(
x+ 1

3

)
+c

where c is a constant of integration.

4. a. Let z = 3 − i. Then |z| =
√

32 + 1 =
√

10 and arg z = − tan−1 1
3 ≈

−0.322 to 3 significant figures.

Therefore z =
√

10e(−i tan
−1 1

3) and the cube roots are z
1
3 = 10

1
6 e(−i tan

−1 1
3
+ 2kπ

3 )

for k = 0, . . . , 2.

b. Several ways to argue this.

Geometrically: The n roots of order n are equally spaced around a circle. If
their sum was nonzero, it would have an argument (an angle relative to the
real axis) which would be a violation of symmetry. Therefore, by symmetry,
the sum must be 0.

Stretching FP1 a bit: Let the n roots of order n be xi. By definition they
are all solutions of the polynomial xni − z = 0. Recall from FP1 that the
sum of the roots of a polynomial is equal to −1 times the coefficient of the
xn−1i term, which is 0.

Directly: Let z be a complex number. Then if its modulus is |z| and its
argument is θ then its nth roots are

z
1
n = |z|ei(θ+

2kπ
n )

there are n of these nth roots and their sum is

n−1∑
k=0

|z|ei(θ+
2kπ
n ) = |z|eiθ

n−1∑
k=0

ei
2kπ
n

Then
n−1∑
k=0

ei
2kπ
n

is a finite geometric series.
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We can express each term in this series as ωk. Notice that these are the nth
roots of unity, i.e. ωn = 1. They form a sequence 1, ω, ω2, . . . , ωn−1.

As said above this is a finite geometric series, therefore

n−1∑
k=0

ωk =
1− ωn

1− ω
= 0

since there are n of them and ω 6= 1.

5. Let θ = tan−1 xy , so tan θ = x
y . Then we can form a right angle triangle

with θ as an angle, x as the opposite side’s length, and y as the adjacent
side’s length. Label the hypotenuse as h.

By Pythagoras the unknown hypotenuse is
√
x2 + y2. Therefore

sin θ =
x√

x2 + y2

as required.

6. Using partial fractions 2
(r−3)(r−1) = 1

r−3 −
1
r−1 . Compare numerator

coefficients or use the Heaviside cover-up method to do this.

Then counting from r = 5, . . . , 25 the sum telescopes so you can match up
terms and eliminate them

1

r − 3
− 1

r − 1
=

[
1

2
+

1

3
+

1

4
+ . . .+

1

20
+

1

21
+

1

22

]
−
[

1

4
+

1

5
+

1

6
+ . . .+

1

22
+

1

23
+

1

24

]
=

1

2
+

1

3
− 1

23
− 1

24

=
413

552
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7. Lines invariant under a matrix are scalar multiples of the matrix’s eigen-
vectors. Any point on such lines pre-multiplied by the matrix will stay on
that line.

The characteristic polynomial of the matrix is

(−1− λ)(6− λ) + 12 = λ2 − 5λ+ 6

which can be set to equal zero and factorised into

(λ− 2)(λ− 3) = 0

Therefore the eigenvalues are 2, 3.

For λ = 2: (
−3 2
−6 4

)(
x
y

)
=

(
0
0

)
Therefore one line invariant under the matrix is −3x+ 2y = 0⇒ y = 3

2x.

For λ = 3: (
−4 2
−6 3

)(
x
y

)
=

(
0
0

)
Therefore the second line is −4x+ 2y = 0⇒ y = 2x.

8. Suppose that a function f(x) can be expressed as the polynomial

f(x) = a0 + a1x+ a2x
2 + a3x

3 + . . .+ akx
k + . . .

where ai are constant coefficients. Then f(nx) can be expressed as the
polynomial

f(nx) = a0 + a1nx+ a2 (nx)2 + a3 (nx)3 + . . .+ ak (nx)k + . . .

where ai are constant coefficients. Then

f ′(nx) = a1n+ 2a2n
2x+ 3a3n

3x2 + . . .

f ′′(nx) = 2a2n
2 + 6a3n

3x+ . . .

f ′′′(nx) = 6a3n
3 + . . .
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And so on. Then

f(0) = a0

f ′(0) = a1n⇒ a1 =
f ′(0)

n

f ′′(0) = 2a2n
2 ⇒ a2 =

f ′′(0)

2n2
=
f ′′(0)

2!n2

f ′′′(0) = 6a3n
3 ⇒ a3 =

f ′′′(0)

6n3
=
f ′′′(0)

3!n3

And so on. Then we can express f(nx) as

f(nx) = f(0) + f ′(0)
x

n
+
f ′′(0)

2

(x
n

)2
+ . . .+

f (k)(0)

k!

(x
n

)k
+ . . .
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